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Abstract The equality of information content in fluores-
cence polarization and emission anisotropy is a common
assumption and the two quantities are used according to
practical considerations. However, an information-theoretic
analysis presented here reveals that their information con-
tent is substantially different. A scaling relation exists be-
tween polarization and anisotropy, and normalization allows
their direct comparison. Various measures of information
such as the absolute, relative, differential, and potential en-
tropies all appear larger for anisotropy over part or all of
its normalized overlap with the polarization function. The
larger information content coincides with the signal range
where the emitted light is polarized mostly in the parallel
direction. Polarization takes on larger absolute entropy only
when the emission is about perpendicular to the incident
light and when the differential entropy is considered over the
entire physical domain. The additional information locally
afforded by polarization appears to be related to its larger sig-
nal range whereas the extra information in anisotropy may
be attributed to a second perpendicular emission plane in its
definition, which is oriented along the axis of propagation of
light and takes the contribution of all degrees of rotational
freedom into account. Thus anisotropy may be considered
as a more accurate and more informative representation of
the underlying physical phenomena. Some practical aspects
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relevant to studies of protein–ligand interactions are also
discussed.
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Introduction

Analytical techniques based on polarization of fluorescence
are used in almost every aspect of molecular analysis, espe-
cially in chemistry and biology, as well as in clinical, medical
and environmental sciences [1, 2]. The directional character-
istic or polarization of the emitted light carries temporal and
spatial information on the electronic and molecular struc-
ture of the fluorophore. When linear polarized light passes
through a fluorescent sample it is possible to obtain informa-
tion on the orientation of the transition dipole and the incident
light with respect to the molecular coordinates. Thus, fluo-
rescence polarization measurements can provide analytical
information on size, shape and flexibility of molecules, on
molecular orientation and mobility, and on processes that
modulate the phenomenon [3, 4].

Experimentally, the degree of polarization is determined
from measurements of fluorescence intensities parallel and
perpendicular to the plane of linearly polarized excitation
light [5, 6]. The polarization state of fluorescence is charac-
terized either by the polarization ratio (or degree of polariza-
tion) or the emission anisotropy [7, 8]. The two measures are
highly interrelated and used according to practical consid-
erations. For example, in the study of radiative transfer the
polarization ratio is preferred whereas emission anisotropy
is better suited to equilibrium binding studies, though both
deliver similar information [9–11].
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Nevertheless, there are characteristic differences between
the two quantities. The polarization ratio and emission
anisotropy are not on the same scale and the latter covers
a smaller range of values. The polarization ratio is measured
with reference to the fluorescent intensity in the direction of
observation while the emission anisotropy is determined in
relation to the total emission intensity. The anisotropy value
is a simple function of the angular displacement between
the excitation and emission dipoles while a more complex
relationship exists between the polarization ratio and the
angle between the two dipoles. In addition, the time depen-
dence of the polarization ratio is determined by two factors,
the fluorescence lifetime and the rotational motion whereas
the time dependence of anisotropy is determined only by the
rotational motion of the fluorophore [12, 13].

Despite these differences, the general view has been that
the information content in the polarization function and the
anisotropy function is identical. However, it should not be
inferred from their close relatedness that the information
content is the same. In fact, on closer examination one will
find that it is substantially different.

This paper is concerned with the use of information theory
to find the amount of information that can be obtained by per-
forming fluorescence polarization and anisotropy measure-
ments. This can be done by employing such different mea-
sures as those introduced by Shannon, Kullback, Danzer, and
others [14–22]. Concepts, definitions, and information mea-
sures transferred from communication theory [23] have been
widely used in a variety of disciplines from chemistry [24]
and analytics [25, 26] to ecology [27] and quantum mechan-
ics [28]. Special applications of information analysis such as
maximum entropy methods have been employed in obtaining
temporal and spatial information on molecular orientation
and mobility as well as in a number of other applications,
notably fluorescence lifetime and size distribution analysis
[29–33]. Here the information content of the components of
fluorescence signals that characterizes the measured polar-
ization and anisotropy values in the fundamental definition
of the physical phenomena and the information content that
characterize the analytical system are analyzed. Although the
informational theoretical analysis of the polarization state of
fluorescence would appear beneficial to better understanding
of these two related quantities, no studies of this type have
been reported to date.

Theory and methodology

Basic relations

The polarization of fluorescence at right angles to the in-
cident light is determined by the value of the angle be-
tween the direction of the absorption and the emission tran-
sition dipoles. Mathematically, the degree of polarization, or

polarization ratio, is defined as the fraction of the light which
is linearly polarized [5, 6]:

P = I‖ − I⊥
I‖ + I⊥

(1)

where I‖ and I⊥ are the intensities of the vertically and
horizontally polarized components of the emission and the
exiting light is polarized in the vertical direction. The denom-
inator represents the fluorescent intensity in the direction of
observation.

The theoretical limits of polarization are −1 and +1 which
would sometimes occur with oriented polymers when the
emitted light is totally polarized in the perpendicular or in
the parallel direction, respectively. In solutions these values
are not attained. For one-photon excitation the real limits
of polarization can be derived from its dependence on the
angular displacement (δ) between the absorption and emis-
sion moments such that P = (3 cos2 δ − 1) × (cos2 δ + 3)−1

[7]. Thus, the maximal value of polarization possible under
any circumstances in a macroscopically isotropic solution
is P = 1/2 for coincident absorption and emission dipoles
(δ = 0[rad]). The other extreme value of polarization
occurs with perpendicular absorption and emission dipole
(δ = π/2[rad]). In this case P = −1/3. When the emission
dipole loses all memory of the excitation polarization,
P = 0 (δ = 3−1/2[rad].

Another measure of the polarization of fluorescence is the
emission anisotropy, A or r, which is defined as the ratio of
the polarized component to the total intensity and is valid for
vertically polarized excitation [7, 8]:

A = I‖ − I⊥
I‖ + 2I⊥

(2)

The theoretical limits of anisotropy are −1/2 and +1 whereas
its real limits can be derived from its dependence on the
angle between the two dipole oscillators in the form of
A = (3 cos2 δ − 1) × 5−1 [7]. For one-photon excitation, its
maximal value in solution is A = 2/5, and its minimal value
is A = −1/5.

The emission anisotropy and polarization ratio can be
interconverted by the relationship A = 2P × (3 − P)−1 or
P = 3A × (2 + A)−1 which can be derived from Eqs. (1)
and (2). It is important to bear in mind, however, that
the two quantities cover two ranges of values that inter-
sect, i.e. they are not on the same scale. There is a scal-
ing relation between them and therefore they cannot be
directly compared. Polarization and anisotropy are dimen-
sionless physical quantities and are correlated by a power
law given by the generic equation y = cxλ, where λ is the
scaling factor and c is a constant. Specifically, with λ =
−1, c = (2 × 3−1), y = A and x = (P−1 − 3−1), the scaling
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Fig. 1 Plot of fluorescence polarization (P) and anisotropy (A) versus
the ratio of the vertically and horizontally polarized components of
the emitted light (q), calculated by Eqs. (3) and (4), respectively. Al-
though drawn on the same axes, the two quantities are not on the same
scale since Ptheor ∈ [−1, 1] and Atheor ∈ [−1/2, 1] as follows from the
mathematical definition of these functions. Their physically meaning-
ful domains for macroscopically isotropic solutions are indicated by
dashed lines

relation is A = (2 × 3−1) × (P−1 − 3−1)−1 which is an of-
ten used alternative and more instructive formulation for the
interconversion of polarization and anisotropy. As it will be
shown later, the information content of continuous variables
is not scale invariant; therefore, one has to put these functions
in a form suitable for calculating their discrete and contin-
uous entropies. Scale normalization allows investigating the
scale-independent relations of the two quantities.

Transformation to normalized rectangular hyperbola

Equations (1) and (2) can be rewritten in terms of the ratio
of the intensities of the vertically and horizontally polarized
components of the emission that will be more useful in this
work:

P = q − 1

q + 1
(3)

and

A = q − 1

q + 2
(4)

where q = I‖/I⊥. The minimum and maximum value of q is
1/2 and 3, respectively, both for polarization and anisotropy
measurements as it follows from Eqs. (3) and (4).

Figure 1 shows the physically meaningful domains of po-
larization and anisotropy as a function of q. Although it is
not evident, Eqs. (3) and (4) are the equations of rectangular
hyperbolae. One can rewrite these equations in standard nor-
malized form for consistent scaling. Rearrangement of Eqs.
(3) and (4) gives

Fig. 2 Plot of fluorescence polarization (P) and anisotropy (A) in nor-
malized form of a rectangular hyperbola. The intensity function v and
the recorded quantity u are calculated by Eqs. (5) and (6), respectively.
The two functions are on the same scale (νnorm ∈ [0, 1]) permitting their
direct comparison. As in Fig. 1, the physically meaningful domains of
polarization and anisotropy are indicated by dashed lines

v = 1 + P

2
= q

1 + q
= u

1 + u
, (u ≡ q) (5)

and

v = 1 + 2A

3
= q/2

1 + q/2
= u

1 + u
, (u ≡ q/2) (6)

The normalized variables u and v are dimensionless and can
be plotted now on the same scale for direct comparison. The
intensity function v is constrained within the limits 0 and 1,
and the accessible theoretical range for signal u is (0,∞).
Figure 2 shows the reduced, normalized rectangular hyper-
bola with the real domains of polarization in macroscopi-
cally isotropic solution which will be used to determine the
information content of these two quantities. The transformed
functions both lie in the first quadrant, unlike their original
definitions, and the origin in the reduced frame coincides
with the vertex of Eqs. (5) and (6).

Absolute information (Shannon entropy)

First, the information content of fluorescence signals in the
context of experimental situation is explored. Suppose signal
X is a (discrete or quantized) random variable which takes
on a finite set of values in any one of a number of states
according to a probability distribution Pr(X ). Then, an ap-
propriate measure of the information content of the system
can be expressed in terms of Shannon’s absolute (discrete)
entropy [14, 15] as

H [X ] = −
r∑

i=1

µ(xi ) log2 µ(xi ) (7)
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where X takes the value xi, r is the number of levels of the
variables, and µ(xi ) is the probability of the elementary event
subject to the constraint

∑r
i=1 µ(xi ) = 1. In fact, H [X ] rep-

resents the average information amount of a set of possible
outcomes (mean entropy per elementary event). Sometimes
it is convenient to use a quantity called total information
which is directly related to Shannon’s entropy but charac-
terizes the information content of the entire system and is
defined by I [X ] = N × H [X ] for a group of N individual
components. [16, 17].

Since the fluorescence emission signal is normally charac-
terized only by one state possessing two recorded attributes
with probabilities µ(x) and 1 − µ(x) for I‖ and I⊥, respec-
tively, Eq. (7) reduces to

H [X ] = −µ(x) log2 µ(x) − (1 − µ(x)) log2(1 − µ(x)) (8)

If there are m-out-of-n signal components possessing one
of the two attributes, the best available estimate of µ(x) is
m/n. The information content that corresponds to this signal
composition may be written as

H [N ] = −m

n
log2

m

n
− n − m

n
log2

n − m

n
(9)

From Eqs. (5) and (6) one finds that the normalized signal
components are represented by u and 1, respectively. Mak-
ing the necessary substitutions one has m = u and n = 1+u.
Equation (9) may now be written as

H [U ] = − u

1 + u
log2

u

1 + u
− 1

1 + u
log2

1

1 + u
(10)

Continuous information (differential entropy)

The absolute entropy may be generalized to the continu-
ous case [34–36], i.e. when a signal is recorded by scan-
ning the entire signal region (or part of it). Let X be a
continuous random variable with a cumulative distribution
F(x) ≡ Pr(X ≤ x). Then, the probability density function
is given by ρ(x) ≡ F ′(x) ≡ Pr(X ), provided that F(x) is
continuous and ρ(x) is normalized. Thus, if ρ(x) > 0 for
x ∈ [x1, x2] and ρ(x) = 0 outside the interval, the infor-
mation content (or differential entropy) of the continuous
variable X is denoted by

H [X ] = −
x2∫

x1

ρ(x) log2 ρ(x)dx (11)

with ρ(x) being normalized so that
∫ x2

x1 ρ(x)dx = 1. While
Eq. (11) is mathematically correct and often used in sci-
entific literature, it is seen to be dimensionally incorrect in

physical applications [37, 38]. In Eq. (11), the argument of
the logarithm has a dimension of a continuous probability
density, i.e. length−1, because here x represents a distance on
the abscissa from a fixed reference point. A possible correc-
tion makes use of an invariant reference density ρ0(x) which
represents the maximum information obtainable within the
duration of the experiment [38 ]:

H [X ] = −
x2∫

x1

ρ(x) log2
ρ(x)

ρ0(x)
dx

= −
x0+ct∫

x0−ct

ρ(x) log2(2ctρ(x))dx (12)

where x0 is the location of the scanning device and 2ct de-
notes the length of interval that can be scanned in finite time
t (c is the speed of light). In this paper x0 is placed in the
center of the physically meaningful interval of the recorded
quantities. With this choice Eq. (12) reduces to

H [X ] = −
x2∫

x1

ρ(x) log2

(
x2 − x1

2
ρ(x)

)
dx (13)

One may then extend Eq. (10) to the continuous domain
and define an appropriate signal function that takes the form
ρ(u) = b−1 × [u × (1 + u)−1 − a]. The dimensionally cor-
rect information amount for the polarization ratio and emis-
sion anisotropy is written such that

H [U ] = −
u2∫

u1

(
1

b
× u

1 + u
− a

b

)

× log2

(
u2 − u1

2b
× u

1 + u
− u2 − u1

2
× a

b

)
du

(14)

where the integration is understood to be over the sup-
port set of U with respect to the physical limits of the
two quantities. Here the signal function may be normal-
ized either to lim

u→+∞ ρ(u) = 1, the theoretical upper limit

of its standard reduced form, or to the union of the physi-
cally meaningful domains of the polarization and anisotropy
function, whichever is preferred for a particular appli-
cation. The normalization constants are a = min ρ(u) =
min u/(1 + min u) (i.e. aP = 1/3 and aA = 1

/
5) and b =

max Hc[U ] = ∫ max u
0 1du = 3 (theoretical limit), or b =

C(UA) + C(UP ) − C(UA∩P ) ∼= 5/6 (physical limit), respec-
tively, where C[U ] = ∫ u2

u1 [u/(1 + u) − a]du
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Relative information (Kullback–Leibler entropy)

A convenient way to measure the divergence or distance
between two probability distributions Pr(X ) and Pr0(X ) has
been introduced by Kullback [18, 19] as follows:

D[X ||X0] =
r∑

i=1

µ(xi ) log2
µ(xi )

µ0(xi )
(15)

This measure is also known as the information gain or rela-
tive entropy [39], Eq. (15) is asymmetrical in its arguments,
i.e. the distance D[X ||X0] is not equal to D[X0||X ]. If the
distributions are not too dissimilar, the difference between
D[X ||X0] and D[X0||X ] is small, approaching 0. For distri-
butions of a continuous variable this measure can be written
as

Dc[X ||X0] =
x2∫

x1

ρ(xi ) log2
ρ(xi )

ρ0(xi )
dx (16)

which is the gain of information obtained if the reference
function ρo(x) is replaced by ρ(x). Then the relative infor-
mation content of polarization with respect to anisotropy can
be derived from Eqs. (10) and (15) as

D[U ] = − u P

1 + u P
log2

(
1 + u A

1 + u P
× u P

u A

)

− 1

1 + u P
log2

1 + u A

1 + u P
(17)

Replacing the probability densities in Eq. (16) with the ap-
propriate variables from Eq. (14), one gets

D[U ] = −
u2∫

u1

(
1

b
× u P

1 + u P
− aP

b

)
log2

(
u2P − u1P

u2A − u1A

×1 + u A

1 + u P
× u P − aP u P − aP

u A − aAu A − aA

)
du (18)

Reversing the roles of polarization and anisotropy in Eqs.
(17) and (18), analog expressions can be easily derived which
would yield a different set of values depending on the simi-
larity of the underlying distribution. Eqs. (17) and (18) lead
to the information theoretic estimator of gain for polarization
versus anisotropy, the alternative leads to the estimator of the
same quantity where the gain is then for anisotropy versus
polarization.

Maximum potential information (Eckschlager–Danzer
entropy)

Next, the information content in the context of analytical
information is explored. Generally, signal functions are ob-
tained by instrumental methods of analysis as two dimen-
sional information, y = f (z). For continuous probability
distributions, the maximum potential information amount
(Eckschlager–Danzer information) of a sequence of signals
that one can obtain by an analytical method is given in [26 ] as

MZY = NZ log2 NY (19)

with NZ and NY being the signal’s resolution power and
its intensity resolution, respectively. Information expressed
in this way is a specific case of the Brillouin measure of
information [16, 17] which is understood in such a way that
a set characterized by MZY can be decomposed into NZ

subsets each of NY elements.
The resolution power, i.e. the numbers of distinguishable

signal positions within the interval of the measurement, is
given by

NZ =
z2∫

z1

dz

�z
(20)

where z1 and z2 are the lower and upper limits, respectively,
within which the signal is recorded. �z represents the signal
resolution which should be approximately double the signal
half-width �z1/2, i.e. it is the smallest difference that one can
analyze. In general, �z is a function of the recorded quantity
z in the form �z−1 = f (z).

In Eq. (19), the intensity resolution is evaluated as

NY = (y2 − y1)n1/2
p

2syt(α, f )
(21)

where y1 and y2 are the lower and upper limits within
which the signal is anticipated, sy is the standard devia-
tion for the signal measurements that characterizes the av-
erage precision of determining the intensity of a signal, and
np is the number of parallel analyses. t(α, f ) = n1/2

p de-
notes the critical value for a quantile of Student distribution.
For a uniform a priori distribution and a normal a posteri-
ori distribution the denominator of NY can be expressed as
2syt(α, f ) = 2�y × n1/2

p where �y is the confidence inter-
val. Then, for y2 → ȳ = (y2 − y1)/2 and y1 → 0, one has:

NY = ȳ

2�y
≈ S

N
(22)
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which corresponds to the signal-to noise-ratio (S/N) by which
the information content is evaluated in information science.
The signal to-noise ratio can also be written as S/N = ȳ/sy

which is the criterion used to decide the precision of analyt-
ical instruments and procedures [26 ].

One can approximate the signal resolution by a function
of the recorded quantity, z → u that corresponds to con-
stant intensity resolution �v. Following Eqs. (5) and (6), the
signal resolution is obtained as �z ≡ �u = �v(1 + u)2 ×
(1 − �v − u�v)−1, where �v ≡ �p/2 ≡ 2�A/3, and �P
and �A are the precision of polarization and anisotropy anal-
ysis, respectively, as usually practiced. One may write the ap-
proximate noise intensity yN as the difference between the
signal intensities at double half-width signal resolution with
statistical risk of error α = 0.01, i.e. yN ≈ �v/5. The above
considerations lead to a specific definition of the maximal an-
alytical information amount for polarization and anisotropy
as

MU V =



u2∫

u1

1 − �ν(1 + u)

�ν(1 + u)2
du



 log2

(
v2 − v1\

2�v

)
(23)

which connects the information content with the recorded
quantity u and its intensity function v (at variable signal and
constant intensity resolution).

Linking information measures to binding parameters

To link the information content of polarization and
anisotropy functions to parameters that can be obtained from
the measurement of the polarized fluorescence intensities, a
simulated study of ligand–protein binding is considered. Us-
ing either polarization or anisotropy data, one can calculate
the fraction of ligand bound (x) at any protein concentra-
tion. The dissociation constant (Kd) is related to x by the
expression [11]:

Kd = (1 − x)(n PT − x LT )

x
(24)

where pT and LT are the total concentration of protein and
ligand, respectively, and n is the number of identical binding
sites without interaction (most commonly n = 1). In terms of
anisotropy, the expression relating the observed or simulated
anisotropy to x is given by [11]

x = A − A f

Ab − A f + (g − 1)(Ab − A)
(25)

with g representing the quantum yield enhancement fac-
tor and Ab and A f denoting the value of bound and free

anisotropy, respectively. An analogous expression exists for
polarization measurements [11]:

x = (3 − Pb)(P − Pf )

(3 − P)(Pb − Pf ) + (g − 1)(3 − Pf )(Pb − A)
(26)

where Pf is the polarization of the ligand free in solution, Pb

is the polarization of the bound ligand, and P is the observed
or simulated polarization. Substituting P and A into Eqs. (5)
and (6) yields u, which in turn can be used in any of the
information measures given above. Thus u effectively links
x to the information content in determination of Kd . The
joint dependence of entropy on these two quantities can be
conveniently presented using contour plots.

Correlation of information content with
time-resolved fluorescence

A critical consideration that impacts on studies of protein–
ligand interactions is the fluorescent lifetime of the fluo-
rophore. The observed polarization will depend not only on
the rotational rates of the system but also on the excited
state lifetime. For a simple system with a single lifetime
and a single rotational correlation time, the polarization can
be written in a rearranged form of the well-known Perrin
equation [39]:

1

P
− 1

3
=

(
1

P0
− 1

3

)
×

(
1 + τ

φ

)
(27)

In this equation P is the observed polarization, P0 is the lim-
iting polarization in the absence of rotation, τ is the excited
state lifetime, and φ is the rotational correlation time which is
related to the rotational relaxation time (ρ) by the expression
ρ = 3φ. For a more complex system, the polarization may
be determined by integration of the usually intricate total po-
larization decay function, which is beyond the scope of this
paper. Perrin’s formula is often stated in terms of anisotropy
as

A = A0 ×
(

1 + τ

φ

)−1

(28)

where A0 is the limiting anisotropy. From Eqs. (27) and
(28), P and A are obtained to correlate τ and φ to the amount
of information via Eqs. (5) and (6) and the equations of
appropriate information functions.

It remains to mention that all integrals used in this work
have been verified by numerical integration using a robust,
extended trapezoidal rule [40].
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Results and discussion

A quantity computed according to Eq. (7) and all expressions
that may be derived from it can be interpreted either as a
measure of entropy or as a measure of information [41].
The first interpretation is appropriate when one deals with
a system before an experiment is carried out on it. Thus H
measures the uncertainty concerning the results of the ex-
periment. On the other hand, when one deals with a system
after the experiment, H measures the amount of informa-
tion obtained in the experiment. The case of fluorescence
polarization and emission anisotropy easily falls into the lat-
ter category. The experiment reducing the uncertainty of the
system is the process of excitation while all the informa-
tion is contained in the polarized intensities in relation to
the absorption transition moment, leaving the emission tran-
sition moment invariant. The emission transition moment
remains the same whatever the excited state reached by the
fluorophore upon excitation because of internal conversion
towards the first singlet state.

Shannon’s measure for discrete signals

When applying Eq. (10) to polarization and anisotropy sig-
nals it is useful to compare the two phenomena both at identi-
cal values of the normalized variable u, and at identical values
of the recorded quantity q, i.e. when q, the ratio of the intensi-
ties of the vertically and horizontally polarized components
is the same in both functions. Recall from Eqs. (5) and (6)
that u can be written as u P ≡ q and u A ≡ q/2. For instance,
if qP ≡ qA = 3 then u P = 3 and u A = 3/2, both represent-
ing identical state of the emitted light. Figure 3 shows a plot
of the information content of polarization and anisotropy sig-
nals as a function of u for various signal compositions. In the
overlapping interval of the two quantities, the information
content appears to be the same. This result is not surpris-
ing since the two quantities are given by the same function
and the information content is unchanged by an isomorphic
transformation of a variable. However, the relationship be-
tween the information amount obtained from polarization
and anisotropy can be more conveniently displayed when
the same data are remapped as function of q (Fig.4). Since
the normalized quantity u for anisotropy is half that observ-
able for polarization under the same conditions (identical
value of q), it easily follows from Eq. (10) that the informa-
tion content of the anisotropy signal is larger than that of the
polarization signal when q > 21/2 or A > 0.121, which is
the physically more interesting recording range. Conversely,
the information content of the polarization signal is larger
when P < 0.172. The maximum information content that
a polarization or anisotropy experiment can produce is 1
bit per signal component which occurs when q = 1 (P = 0)
for polarization, and q = 2 (A = 1/4) for anisotropy. The

Fig. 3 Absolute (discrete) information content (H) of fluorescence
polarization (P) and anisotropy (A) as a function of u. The lines are
given by Eq. (10). The overlapping interval u ∈ [1/2, 3/2] represents
the isoinform domain

corresponding angular displacement between the absorp-
tion and emission dipoles is δ = 3−1/2[rad] ≈ 54.7◦ and δ =
31/2 × 2−1[rad] = 30◦, respectively.

As an example, determine the information content for the
maximum signal intensity in a polarization or anisotropy
experiment. Substituting u = 3 (q = 3) for polarization
and u = 3/2 (q = 3) for anisotropy into Eq. (10), one gets
(in bits per normalized intensity component): H [UP ] =
−3 × (1 + 3)−1 × log2(3 × (1 + 3)−1) − (1 + 3)−1 × log2

((1 + 3)−1) ∼= 0.81 and H [UA] = −3 × (2 + 3)−1 ×
log2(3 × (2 + 3)−1) − 2 × (2 + 3)−1 × log2(2 × (2 + 3)−1)
∼= 0.97, respectively.

Quite usefully, one may find the same result from
simple physical considerations by counting the number
photons emitted in the parallel and perpendicular directions,
or equivalently, averaging over the appropriate intensity
distribution functions of the fluorescence light. Using
standard formulas for integration, relative values are easily
obtained for the two observed components like I‖/I⊥ = 3/1
at their respective maximum [41, 42]. This implies that the

Fig. 4 The same information amount as in Fig. 3, remapped against
q. The polarization and anisotropy functions coincide at one point,
u = 21/2, above which anisotropy appears more informative
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(normalized) total intensities are n ≡ I‖ + I⊥ = 3 + 1 = 4
and n ≡ I‖ + 2I⊥ = 3 + 2 × 1 = 5 for polarization and
anisotropy, respectively, whereas the signal component
possessing the parallel attribute is the same in both cases:
m ≡ I‖ = 3. This can be used to calculate the information
content. From Eq. (9), one obtains the result in bits
per intensity component that H [NA] = −3 × 5−1 ×
log2(3 × 5−1) − (5 − 3) × 5−1 × log2((5 − 3) × 5−1) ∼=
0.97 and H [NP ] = −3 × 4−1 × log2(3 × 4−1) − (4 − 3) ×
4−1 × log2((4 − 3) × 4−1) ∼= 0.81 which is the same out-
come as that obtained from the more general function defined
by Eq. (10). Then the information content of the population
of n signals can be written as I [NP ] = 4 × H [NP ] ∼= 3.25
bits and I [NA] = 5 × H [NA] ∼= 4.85 bits for polarization
and anisotropy, respectively, i.e. the anisotropy signal yields
about 1.6 bits more information at the maximum value of
the two signal components when u = 3. In a similar way as
above, the information content can also be calculated at the
minimum value of the intensity function, i.e. when q = 1/2.
Readily, one has for the mean information entropy (in bits
per intensity component) H [NP ] ∼= 0.92 and H [NA] ∼= 0.72
which implies that the total information amount in bits
is I [NP ] ∼= 3.67 and I [NA] ∼= 3.61, respectively. Some
practical aspects of the unequal information content of the
two functions will be discussed later.

Scanning the whole signal range

Now turn attention to the continuous situation where the
signal is recorded by scanning the entire signal region. The
differential entropy acts as a measure of information of ac-
curate (unbiased) direct measurements which is noise free
and exact, i.e. one measures the amount of information as a
decrease of uncertainty in the experiment and not as the ab-
solute information of the signals. In general, the differential
entropy cannot be obtained as a limiting case of the absolute
entropy and Hc behaves differently in many ways than its
finite counterpart. From the viewpoint of this work, the most
relevant difference is in the scaling behavior of the two en-
tropies. Rescaling a variable does change the differential en-
tropy such that Hc[γ × X ] = Hc[X ] + log |γ |, whereas the
absolute entropy remains invariant. Therefore, two variables
need to be on the same scale, or be simultaneously rescaled
by the same factor for correctly measuring their information
contents in relation to each other. This characteristic requires
the use of the standard normalized forms of the polarization
and anisotropy functions instead of their original definitions.

First, calculate the information content at a finite scale,
for instance at the level of signal resolution �z ≡ �u ∈
[0.004, 0.049] (details of calculating �z will be given
later under Analytical Information). From Eq. (14), one
gets (in bits per component) HP

∼= 0.024 and HA
∼= 0.035,

Fig. 5 Differential (continuous) information content (H) of fluores-
cence polarization (P) and anisotropy (A) as a function of u. The inte-
gration is carried out over the interval u P ∈ [1/2, u) and u A ∈ [1/4, u),
respectively, according to Eq. (14)

respectively, when the integration is carried out from u = 1
to 1 + �u. At this fine scale the information content is small,
but larger for anisotropy than for polarization. For larger val-
ues of u the behavior of the information amount is similar,
but the actual difference between the two quantities is larger.
Figure 5 shows the continuous information content of the po-
larization and anisotropy functions versus u by integrating
over an extended range from u P = 1/2 (or u A = 1/4) to u as
indicated on the abscissa. The amount of information appears
on average 30% larger for anisotropy over the whole section
of the normalized interval u ∈ [1/2, 3/2] that the two func-
tions share. This is a remarkable result because the two func-
tions are on identical scale, and Eq. (15) makes an allowance
for the physically meaningful domains of polarization and
anisotropy. However, performing the integration over the
respective entire domains of the two quantities, the informa-
tion content of the polarization function appears larger. This
may be explained by realizing that the continuous entropy is
the extent of inequality between two items of information.
Accordingly, the apparent extra information is due to the
more extended domain of the normalized polarization func-
tion. Figure 5 also shows that the maximum continuous infor-
mation content is attained at u P ≈ 8/3 (q ≈ 8/3) and u A =
3/2 (q = 3) which yields (in bits per component) HP

∼= 0.95
and HA

∼= 0.83, respectively if the scanning device is placed
at the center of the interval. For comparison with the finite
case, recall that the maximum absolute information content is
1 bit both for polarization and anisotropy which is obtained
when u = 1.

It is worth noting that these considerations apply only
to continuous, linearly polarized fluorescent light. For non-
linear optical waves, the classic definition of the degree of
polarization is not relevant [43, 44] and one would need to
proceed more carefully to calculate the information content
from all the statistical moments in such medium which is
beyond the scope of this paper.
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Fig. 6 Plots of both relative entropies D[P||A] and D[A||P] versus u
for the discrete case. The two quantities are calculated by Eq. (17) and
its reverse (in argument), respectively

Relative information gain

While the absolute entropy is used to assess the infor-
mation content of analytical signals, the relative entropy
is used to assess the effective information or information
gain of analytical results. The Kullback–Leibler informa-
tion measure allows quantitative treatment of the connec-
tion between entities or characteristics of the same type,
possibly with respect to some prior knowledge or some un-
biased distribution. The present work relates the normal-
ized polarization and anisotropy functions with reference to
each other in order to characterize the relative divergence
in their signal functions. Figure 6 shows a plot of relative
discrete information for polarization versus anisotropy and
anisotropy versus polarization, respectively. As one can see
in this figure the qualitative behavior of the two functions
is similar but they only coincide at one point, u = 1 where
both distributions maximally match. Generally, the differ-
ence between the two distributions is small and thus they
mutually correlate to certain extent, both containing infor-
mation on the other. The information gain appears max-
imum when u P = 21/2 and u A = 2−1/2, i.e. when qP ≡
qA = 21/2 which corresponds to an angular displacement
of δ ≈ 43◦.

For the continuous case, the relative entropy is plotted
in Fig. 7. Here, the two distributions appear similar again;
however their difference is larger than in the finite case dis-
playing larger independence from each other. Over their
normalized overlap, the information gain emerges greater
for anisotropy with respect to polarization, while the infor-
mation gain for polarization is naturally larger outside this
range. Unlike with the discrete function, the information gain
for polarization increases with increasing u. Maximum gain
relatively to the chosen coordinate system is obtained when
qP ≡ qA = 3.

Fig. 7 Plots of both relative entropies D[P||A] and D[A||P] versus u
for the continuous case. The two quantities are calculated by Eq. (18)
and its reverse (in argument), respectively

Analytical information content

Now, consider the case of analytical information content, i.e.
the maximum potential information amount or Eckschlager–
Danzer measure of Brillouin information, for polarization
and anisotropy measurements. This is conceptually different
from the information measures discussed above as it derives
the information content from the difference between two
resolvable signal components. Therefore, it is characteristic
of the analytical system (how signal is measured) rather than
of the signal itself.

First note that very precise measurements (P ± 0.003
or A ± 0.002) are readily obtainable with modern instru-
mentation. Thus, from the relation �z ≡ �u = �v(1 +
u)2 × (1 − �v − u�v)−1 (see Theory and Methodology)
one finds that typical values of the signal resolution fall in
the range �z ≡ �u P ∈ [0.0042, 0.0168] and �z ≡ �u A ∈
[0.0068, 0.0486], respectively. A corresponding calcula-
tion for the noise intensity yields �νP ≡ �P/2 = 0.003
and �νA ≡ 2�A/3 = 0.00267, respectively. On substitut-
ing these values into Eq. (23), first one can calculate the
maximum potential information amount for polarization and
anisotropy measurements over the narrow interval of sig-
nal resolution. In both cases, the information amount ob-
tained is about 1 bit; more exactly MP = 0.99399 and
MA = 0.99465, respectively. At first sight this is a small
difference in favor of anisotropy. However, the analytical
information content takes on considerably high values when
the entire signal range is considered, resulting in an ampli-
fication of the difference. Figure 8 shows the dependence
of the maximum potential information on u. If the informa-
tion content of the two quantities (P and A) is compared
over the whole physically meaningful domain, one finds
(in bits) that Mp = 844 and MA = 929, respectively. Con-
straining the calculations to the same normalized interval
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Fig. 8 Maximum potential information amount (M) of fluorescence
polarization (P) and anisotropy (A) plotted against u. The intervals
u P ∈ [1/2, u) and u A ∈ [1/4, u) are used to calculate the analytical
information with fixed intensity resolution according to Eq. (23)

u ∈ [1/2, 3/2] for the two quantities, greater analytical in-
formation is obtained for anisotropy, specifically MP = 484
and MA = 561, respectively. Unlike the case with differ-
ential entropy, the larger interval for polarization does not
contribute to the increase of potential information.

The calculated potential information appears to be on the
same order that other spectrometric methods furnish. A com-
pilation of such values for various methods is listed in [26].
Just to cite two, UV-VIS spectrometry yields 500 bits of in-
formation and optical emission spectrometry provides 600
bits (by quantometers).

Practical considerations

Maximum absolute information is attained when the compo-
nents of the (normalized) polarized fluorescence intensities
are the same both in parallel and perpendicular directions.
The distribution of entropy data values around the maximum
is not symmetrical though. Values on one side of the distri-
bution tend to be further from the maximum than values on
the other side. Figure 4 shows that it may be more advanta-
geous (from the information theoretic point of view) to use
the anisotropy function in the higher end of the positive sig-
nal range where the emitted light is polarized mostly in the
parallel direction. In this respect, polarization is better suited
to be used in the negative signal range (negative initial polar-
ization) or in the low positive range where the emitted light
is polarized to a larger extent in the perpendicular direction.

As a practical example, consider how various information
measures reflect into the determination dissociation con-
stants in studies of ligand–protein interactions. The disso-
ciation constant that characterizes a reversible equilibrium
between a protein and a fluorescent ligand (P L ↔ P + L)
is given by Eq. (24). To determine Kd , one must be able
to measure the concentration of the ligand-protein complex
i.e. the fraction of the ligand bound if the total ligand and

total protein concentrations are known. Figure 9 shows typ-
ical titration curves for polarization and anisotropy data as a
function of increasing total protein concentration while the
ligand concentration is kept constant. In the simulated ex-
periment, the observed polarization and anisotropy values
are obtained from Eqs. (25) and (26) which are subsequently
normalized via Eqs (5) and (6) to allow their use in expres-
sions of various information measures derived in this work.
One can then investigate how the information content is cor-
related to the fundamental experimental parameters x and u.
Figures 10 and 11 show contour plots of absolute information
obtained from anisotropy and polarization titrations in a sim-
ulated binding experiment as a joint function of x and u. The
information content associated with Kd appears generally
greater for anisotropy than for polarization. The most infor-
mative experimental range is approximately x ∈ [0.4, 1.0]
using anisotropy and x ∈ [0.0, 0.6] using polarization.
Figures 12 and 13 show the maximum potential information
amount (analytical information) for the same experiment.
In both cases, the larger information content is linked with
larger x values of the bound ligand. Here, the most informa-
tive experimental range is about x ∈ [0.3, 1.0] for anisotropy
and x ∈ [0.7, 1.0] for polarization. Thus, the information ob-
tained from anisotropy measurements appears to be greater
over a considerably larger range of the experimental u–x
space. Accordingly, information measures may help limit
the range of values for analysis. Note, however, that using
extreme values of x (i.e. x<0.1 or x>0.9) may lead to large
inaccuracies in the determination of dissociation constants.
The experimental errors in x propagate most strongly into
Kd at low and high values of x as described previously [11].
Selecting the optimal range of parameters is especially im-
portant in large scale screening experiments where a number
of unknown proteins are tested simultaneously.

Fig. 9 Titrations of a fluorescent ligand with a protein: anisotropy (A)
and polarization (P) vs. total protein concentration PT . Data are simu-
lated using Eqs. (24), (25) and (26). The parameters used are: Kd = 1
µM , LT = 1 µM , A f = 0.060, Ab = 0.340, Pf = 0.087, Pb = 0.436,
and g = 1.6. PT is varied from 0.055 µM to 18 µM
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Fig. 10 Absolute information content (H) of fluorescence anisotropy
(A) in a simulated binding experiment with respect to u and x (the
fraction of ligand bound). In an ideal experiment, a preset value of Kd

(1 µM) is considered. Other parameters are as in Fig. 9. H is calculated
by Eq. (10). The contour plot shows the information content reflected
into the determination of Kd from the measurements of the polarized
fluorescence intensities as a joint function of u and x

Some aspects of time-resolved fluorescence must also be
examined as the differences between the timescales of the
depolarization motions and the fluorescence lifetime of the
fluorophore have direct relevance to studies of ligand–protein
interactions. If the rotational correlation time (φ) associated
with a depolarizing process is much shorter than the fluo-
rescence lifetime (τ ) the depolarization may be too rapid to
be resolved. On the other hand, if a depolarizing process is
much slower than the lifetime of the fluorophore, little depo-
larization will occur before emission. The approximate range
of resolvable rotational correlation time is τ/10 ≤ φ ≤ 10τ

[45]. Figure 14 shows the absolute information content of
polarization and anisotropy as a function of the ratio of τ

and φ for a simple system with only one rotational corre-
lation time and one fluorescence lifetime. The information
content for polarization appears to increase and level off
with increasing lifetime whereas for anisotropy it is not a

Fig. 11 Absolute information content (H) of fluorescence polarization
(P) in a simulated binding experiment with respect to u and x. H is
calculated by Eq. (10). Parameters are as in Fig. 9

Fig. 12 Maximum potential information amount (M) of fluorescence
anisotropy (A) in a simulated binding experiment with respect to u and
x. M is calculated using Eq. (23). Parameters are as in Fig. 9

monotonous function but has a maximum. If one takes the
limiting anisotropy to its greatest extent (A0 = 2/5) the max-
imum occurs at τ/φ = 3/5, i.e. when the fluorophore’s life-
time is 60% of the rotational correlation time. With smaller
values of A0, the maximum is shifted to smaller τ/φ ratios.
Suppose a spherical protein of molecular weight 40 kDa has
a rotational correlation time of 17 ns. One then calculates
τ = 0.6 × 17 ≈ 10 ns (at maximum limiting anisotropy) for
the lifetime of an ideal fluorophore that would give maximum
absolute information in an anisotropy decay experiment.

As presented on Fig. 15, the analytical information con-
tent diminishes as τ/φ increases both for polarization and
anisotropy. This is a direct consequence of the fact that polar-
ization and anisotropy are inversely proportional to the ratio
of lifetime and rotation correlation time, see Eqs. (27) and
(28). This inverse correlation, however, cancels in the nu-
merator and denominator of absolute information function;
therefore, Shannon’s entropy does not show a monotonous
decrease. The rate of decay in the analytical information
function is different for polarization and anisotropy, the lat-
ter displaying a larger decrease from its higher initial value.

Fig. 13 Maximum potential information amount (M) of fluorescence
polarization (P) in a simulated binding experiment with respect to u
and x. M is calculated using Eq. (23). Parameters are as in Fig. 9
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Fig. 14 Time dependence of the absolute information content (H) for
polarization (P) and anisotropy (A). A simple spherical system with
one fluorescence lifetime (τ ) and one rotational correlation time (φ) is
assumed. H is calculated using Eqs. (27), (28), and (10) via normalized
values of P and A. The limiting polarization is P0 = 0.5

The two functions yield the same information when τ/φ ≈ 1
and the limiting polarization and anisotropy are at their
respective maximum. With smaller values of P0 and A0, the
isoinform point is shifted to lower τ/φ ratios. Since most
extrinsic and intrinsic fluorophores used in ligand–protein
studies have lifetimes less than 5 ns while proteins suitable
for analysis typically have 5–20 ns rotational correlation
times, the higher information content of the anisotropy func-
tion is effectively contained in the physically most useful τ/φ

range. Consider, however, that some fluorescent ligands have
very long lifetimes; for instance ruthenium can be hundreds
of ns and certain pyrene probes can be more than a hundred
ns. For such cases, the polarization function provides more
information, both analytical (Fig. 15) and absolute (Fig. 14),
but these probes could give very low polarization values.

Physical origin of the extra information

It follows from the preceding analysis that the larger differen-
tial information content of the polarization function is related

Fig. 15 Plots showing the analytical information amount (M) as a
function of τ and φ for the system from Fig. 14. M is calculated using
Eq. (23)

to its larger normalized measurement range. The principal
finding, however, is that anisotropy provides more absolute
and potential information when polarization and anisotropy
share the same normalized range. The absolute information
in anisotropy is found to be larger when the ratio of the par-
allel and perpendicular signal components exceeds 21/2 and
it is larger for polarization below this threshold. The max-
imum potential information amount takes on a larger value
for anisotropy in the entire overlapping interval and, in fact,
delivers more information than polarization over its whole
domain.

The extra information in the anisotropy function may be
attributed to the presence of a second perpendicular inten-
sity term in the denominator of its definition which deter-
mines the characteristic scale for anisotropy. The informa-
tion amount depends not only on the information content of
the signal but also on the way the signal is processed and
the analysis is carried out. The second perpendicular emis-
sion plane is oriented along the axis of propagation of the
polarized light. Therefore the anisotropy functions takes the
contribution of all degrees of rotational freedom into consid-
eration reflecting the orientations of molecules in the entire
signal space via the photoselection process. When macro-
scopically isotropic systems are considered, both intensities
that correspond to the perpendicular orientation of the polar-
ized emission are the same. Thus anisotropy effectively gives
proper weight to the perpendicular components that repre-
sent two-dimensional information, whereas the information
from the single perpendicular component of polarization is
one-dimensional. In other words, anisotropy accounts for
molecular randomness in a larger signal space than polar-
ization, and—by definition—information content is also a
measure of randomness.

Conclusions

The information content of fluorescence polarization and
anisotropy using various entropy measures was examined.
While it may seem surprising that the information content
for the two quantities are different as one measure can be
converted to the other and vice versa, the difference math-
ematically originates from the fact that a scaling relation
exists between them. Behind their formal definitions lies a
physical point of view which is based on methodological
differences regarding how the components of a fluorescent
signal are measured. Scale normalization, however, allows
one to investigate the scale-independent relations of the two
quantities, as shown in this paper.

Although some details may be different, all information
measures furnished concordant results. From the perspective
of this work, perhaps the most accessible and most useful
information-theoretic index is Shannon’s entropy because
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it does not depend on a particular reference distribution or
on the analytical system; therefore it gives the most insight.
Concluding this work, an opinion may be expressed that
anisotropy is a more accurate representation of the underly-
ing physical phenomena. As a whole, the differential infor-
mation amount in fluorescence polarization measurements
is larger over the whole recording range, but more impor-
tantly, the absolute and potential information obtained from
anisotropy over its normalized common range with polar-
ization attains a larger value. It should be emphasized that
the information content of polarization is referenced to the
polarized light in the direction of observation whereas that
of the anisotropy function is related to the total amount of
polarized light. The information content may reflect the real
properties of the polarized intensity components, and is likely
to be homomorphic to the Curie symmetry principle of the
emitted fluorescent light in a broad sense. The absolute and
differential information content can mathematically mani-
fest the difference in the properties of the polarization and
anisotropy function as well as the way the polarized signal is
analyzed. These observations could be of use in further anal-
ysis of the quantitative aspects of two related quantities of
the polarization state of fluorescence as a means in selecting
the most informative function for a particular application.
Future studies will be aimed at specific details of practical
use.
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